مکانیک آماری

مکانیک آماری، یکی از مباحث مطرح در فیزیک است که به سیستم‌هایی با تعداد متغیرهای بسیار زیاد می‌پردازد. این متغیرها می‌توانند ذراتی چون اتم‌ها، مولکول‌ها، یا ذرات بنیادی باشند که تعداد آن‌ها می‌تواند هم‌مرتبه با عدد آووگادرو باشد.





در این مبحث، با استفاده از خاصیتهای میکروسکوپی این ذرات مانند ساختار اتمی و برهمکنش بین آن‌ها، اطلاعاتی در مورد خواص ماکروسکوپی سیستم مانند فشار، انتروپی و انرژی آزاد گیبس، از طریق محاسبات و روش‌های آماری به دست می‌آید. مثلاً معادله‌های حالت در ترمودینامیک توسط مدل‌های میکروسکوپی-آماری مشتق می‌شوند.

مکانیک آماری شکوفایی خود را قبل از همه، مدیون دانشمندان کلاسیکی نظیر لودویگ بولتزمان، جوسایا ویلارد گیبز و جیمز کلرک ماکسول می‌باشد.





میانه‌ها و شاخص‌های آماری
میانه‌ها وشاخص‌های آماری ترتیبی

iامین شاخص آمار ترتیبی یک مجموعه n عضوی، iامین عضو کوچک است. به عنوان مثال، مینیمم یک مجموعه از اعضا، اولین شاخص آمار ترتیبی (i=۱)است و ماکزیمم، nامین شاخص آمار ترتیبی (i=n)است. میانه، به طور غیر رسمی، نقطهٔ میانی مجموعه‌است. هنگامی که n فرد است، میانه منحصر به فرد است که در i=(n+۱)/۲ رخ می‌دهد. وقتی n زوج است، دو میانه وجود دارند که در i=n/۲ و i=n/۲+۱ رخ می‌دهند. این مقاله انتخاب iامین شاخص آمار ترتیبی از یک مجموعه با n عضو مجزا را بیان می‌کند. مسئله انتخاب می‌تواند به طور رسمی به شکل زیر تعیین شود: ورودی: مجموعه A با n عدد(مجزا) و عدد i، که i بزرگتر یا مساوی ۱ و کوچکتر یا مساوی با n است. خروجی: عضو x در A که بزرگتر از دقیقا i-۱ عضو دیگر A می‌باشد. مسئله انتخاب می‌تواند در زمان (O(nlgn حل شود، چون می‌توانیم اعداد را با استفاده از مرتب سازی دودویی (heap sort) یا مرتب سازی ادغام مرتب کنیم و سپس به سادگی iامین عنصر در آرایه خروجی را مشخص کنیم اما الگوریتم‌های سریع تری وجود دارند. ابتدا مسئله انتخاب مینمم و ماکزیمم یک مجموعه از اعضا را بررسی می‌کنیم. مسئله جالب تر، مسئله انتخاب کلی است، که دردوقسمت بررسی می‌شود.قسمت اول یک الگوریتم عملی را تحلیل می‌کند که در حالت میانگین به زمان اجرای (O(n می‌رسد. قسمت بعد یک الگوریتم است که جنبه‌های نظری بیشتری داشته و در بدترین حالت به زمان اجرای (O(n می‌رسد.






مینیمم و ماکزیمم

چه تعداد مقایسه برای تعیین یک مجموعه n عضوی لازم است؟ می‌توانیم به سادگی به حد بالای n-۱ برای مقایسه‌ها برسیم: هر عضو مجموعه را به ترتیب بررسی کرده و کوچکترین عضوی که تا کنون دیده شده‌است را نگه می‌داریم. در روال زیر، فرض می‌کنیم مجموعه در آرایه A قرار دارد، که طول آرایه n است. قطعا یافتن ماکزیمم می‌تواند با n-۱ مقایسه نیز انجام شود. آیا این بهترین کاری است که می‌توانیم انجام دهیم؟ بله، چون می‌توانیم به حد پایین n-۱ برا مقایسه‌ها برای مینممم برسیم. الگوریتم را در نظر بگیرید که مینیمم را به صورت مسابقه‌ای بین عناصر تعیین می‌کند. هر مقایسه یک بازی در مسابقه‌است که در آن عنصر کوچکتر از میان دو عنصر، برنده می‌شود. نگرش اصلی این است که هر عنصر به جز برنده باید حداقل یک بازی را ببازد. از این رو n-۱ مقایسه برای تعیین مینیمم لازم است.






مینیمم و ماکزیمم هم زمان

در برخی کاربردها، باید هم مینیمم و هم ماکزیمم یک مجموعه از n عضو را پیدا کنیم. ارائه الگوریتمی که بتواند هم مینیمم و هم ماکزیمم n عضو را با استفاده از (θ(nمقایسه، که به طور مجانبی بهینه‌است، پیدا کند سخت نیست. به سادگی مینیمم و ماکزیمم را به طور مستقل، با استفاده از n-۱ مقایسه برای هر یک پیدا می‌کند، که در کل ۲n-۲ مقایسه انجام می‌دهد. در حقیقت، حداکثر ۳n/۲ مقایسه برای پیدا کردن مینیمم و ماکزیمم کافی است. استراتژی این است که اعضای مینیمم و ماکزیمم را که تا این جا دیده شده‌اند نگه داریم. به جای این که هر عضو ورودی را با مقایسه با مینیمم و ماکزیمم فعلی پردازش کنیم، که هزینه ۲ مقایسه برای هر عضو را صرف می‌کند، اعضا را جفت به جفت مقایسه می‌کنیم. ابتدا جفت عضوها را از ورودی با یکدیگر مقایسه می‌کنیم و سپس عضو کوچکتر را با مینیمم جاری و عضو بزرگتر را با ماکزیمم جاری مقایسه می‌کنیم که هزینه ۳ مقایسه برای هر دو عضو را موجب می‌شود.






انتخاب در زمان خطی مورد انتظار

مسئله انتخاب کلی نسبت به مسئله پیدا کردن یک مینیمم سخت تر به نظر می‌آیدو هم چنان که به صورت شگفت آوری زمان اجرای مجانبی هر دو مسئله یکی است: (θ(n.در این بخش یک الگوریتم تقسیم و حل را برای مسئله انتخاب ارائه می دهیم. الگوریتم Randomized-Select بعد از الگوریتم مرتب سازی سریع مدل می‌شود. همانند مرتب سازی سریع ایده آن است که آرایه ورودی را به طور بازگشتی تقسیم کنیم. ولی برخلاف مرتب سازی سریع که هر دو طرف تقسیم بندی را به صورت بازگشتی پردازش می‌کند، Randomized-Select فقط روی یک طرف تقسیم بندی عمل می‌کند. این تفاوت در تحلیل آشکار می‌شود. در حالی که زمان اجرای مورد انتظار مرتب سازی سریع (θ(nlgn است، زمان مورد انتظار این الگوریتم (θ(nاست. Randomized-Select از روال Randomized-Partition که در بخش مرتب سازی سریع معرفی شد استفاده می‌کند.






انتخاب در بدترین حالت زمان خطی

اکنون الگوریتمی را بررسی می کنیم که زمان اجرای آن در بدترین حالت (O(nاست. مانند Randomized-Select، الگوریتم Select عنصر مورد نظر را با تقسیم بندی بازگشتی آرایه ورودی پیدا می‌کند. اما ایده‌ای که پشت این الگوریتم وجود دارد، این است که یک قسمت خوب را در هنگامی که آرایه تقسیم می‌شود تضمین می‌کند. Select از الگوریتم تقسیم بندی قطعی Partition مربوط به مرتب سازی سریع استفاده می‌کند که طوری تغییر یافته است که عنصری که تقسیم بندی حول آن انجام می‌شود را به عنوان پارامتر ورودی بگیرد. این الگوریتم iامین عنصر کوچک از آرایه ورودی با n>1 عنصر را با اجرای مراحل زیر تعیین می‌کند.(اگر n=1باشد آن گاه Select به طور مطلق، تنها ورودیش را به عنوان iامین عنصر کوچک برمی گرداند.)

n عنصرآرایه ورودی را بهn/5 گروه 5 عنصری تقسیم کنید و حداکثر یک گروه از n mod 5 عنصر باقیمانده ساخته می‌شود.
میانه هر یک از n/5گروه را ابتدا با مرتب ساز درجی عناصر هر گروه (که حداکثر 5 عنصر در هر یک وجود دارد)و سپس انتخاب میانه از لیست مرتب شده عناصر گروه پیدا کنید.
از Select به صورت بازگشتی برای پیدا کردن میانه x از n/5میانه‌ای که در مرحله 2 پیدا شدند استفاده کنید.
آرایه ورودی را حول میانهٔ میانه‌ها (یعنی x)با استفاده از نسخه تغییر یافته Partition تقسیم کنید. فرض کنید k یک واحد بیشتر از تعداد عناصر در طرف کم تر تقسیم بندی باشد، بنابراین k، x امین عنصر کوچک است و n-k عنصر در طرف بیشتر تقسیم بندی موجود است.
اگر i=k باشد، x را برگردانید در غیر این صورت اگر i<k باشد از Select به صورت بازگشتی برای پیدا کردن iامین عنصر کوچک در طرف کم تر استفاده کرده یا اگر i>k باشد، از آن برای پیدا کردن (i-k)امین عنصر کوچک در طرف بیشتر استفاده کنید.

برای تحلیل زمان اجرای Select، ابتدا یک حد پایین روی تعداد عناصر بزرگتر از عنصر تقسیم کنندهٔ x تعیین می کنیم. حداقل نصفی از میانه‌های پیدا شده در مرحله 2 بزرگتر از x یعنی میانهٔ میانه‌ها هستند. بنابراین در حداقل نصف n/5گروه، 3 عنصر وجود دارند که از x بزرگترند، به جز برای گروهی که اگر5 به n قابل قسمت نباشد، کم تر از 5 عنصر دارد و گروهی که خود شامل x است. با منظور نکردن این دو گروه ثابت می‌شود که تعداد عناصر بزرگتر از x حداقل برابر است با

3(2-1/2n/5)

که این عبارت بزرگتر یا مساوی با 3n/10-6 است. به طور مشابه عناصری که کوچک تر از x هستند حداقل 3n/10-6 است. بنابراین در بدترین حالت، Select برای حداکثر 7n/10+6 عنصر در مرحلهٔ 5 به طور بازگشتی فراخوانی می‌شود.





توان آماری

توان یک آزمون آماری احتمال رد کردن فرض صفر اشتباه می‌باشد (احتمال آنکه تست آماری مرتکب خطای نوع دوم نشود). هر چه توان یک تست بیشتر باشد احتمال وقوع خطای نوع دوم کمتر خواهد بود.

محققان همیشه نگران این بوده اند که نکند فرضیه صفر را رد کنند در حالی که در واقع درست بوده است (تست آماری مرتکب خطای نوع یک شود) یا اینکه نتوانند فرضیه صفر را رد کنند در حالی که این روش های استفاده شده بوده اند که اثری واقعی داشته‌اند (تست آماری مرتکب خطای نوع دو شود). توان آماری یک تست، احتمال آن است که منجر به این میشود که شما فرضیه صفر را رد کنید وقتی فرضیه در واقع غلط است. چون بیشتر تست های امری در شرایطی انجام میشوند که عامل اصلی(treatment)، حداقل کمی اثر روی نتیجه دارد، توان آماری به صورت احتمال اینکه آن تست "منجر به نتیجه گیری درستی در مورد فرضیه صفر میشود"، تعبیر میشود.

توان یک تست آماری عبارت است از: یک، منهای احتمال ایجاد خطای نوع دو. یا به عبارتی، احتمال اینکه شما از خطای نوع دو دوری میکنید.

در مطالعات با توان آماری بالا، خیلی کم پیش میاید که در تشخیص اثرات تمرین اشتباه کنند.

توان یک تست آماری، شامل عملکردِ: حساسیت، اندازه اثر در جمیعت آماری، و استاندارد های استفاده شده برای اندازه گیری فرضیه آماری است. - ساده ترین راه برای افزایش حساسیت یک تحقیق، افزایش تعداد آزمودنی هاست. - در مورد استاندارد، ساده تر آن است که فرضیه صفر را رد کنیم اگر سطح معناداری، ۰.۰۵ باشد تا ۰.۰۱ یا ۰.۰۰۱.

سه قدم برای تعین توان آماری: ۱- مشخص کردن حد، برای معنی دار بودن آماری. فرضیه چیست؟ سطح معناداری چقدر است؟

۲- حدس زدن اندازه اثر. انتظار دارد که درمان(treatment)، دارای اثری کم، زیاد، یا متوسط باشد؟





احتمالات

بطور ساده، احتمالات (به انگلیسی: Probability) به شانس وقوع یک حادثه گفته می‌شود.

احتمال معمولا مورد استفاده برای توصیف نگرش ذهن نسبت به گزاره هایی است که ما از حقیقت انها مطمئن نیستیم. گزاره های مورد نظر معمولا از فرم "آیا یک رویداد خاص رخ می دهد؟" و نگرش ذهن ما از فرم "چقدر اطمینان داریم که این رویداد رخ خواهد داد؟" است. میزان اطمینان ما، قابل توصیف به صورت عددی می باشد که این عدد مقداری بین 0 و 1 را گرفته و آن را احتمال می نا میم. هر چه احتمال یک رویداد بیشتر باشد، ما مطمئن تر خواهیم بود که آن رویداد رخ خواهد داد. درواقع میزان اطمینان ما از اینکه یک واقعه (تصادفی) اتفاق خواهد افتاد.






نظریهٔ احتمالات

نظریهٔ احتمالات به شاخه‌ای از ریاضیات گویند که با تحلیل وقایع تصادفی سروکار دارد.

مانند دیگر نظریه ها، نظریه احتمال نمایشی از مفاهیم احتمال به صورت شرایط صوری (فرمولی) است – شرایطی که می‌تواند به طور جدا از معنای خود در نظر گرفته شود. این فرمولبندی صوری توسط قوانین ریاضی و منطق دستکاری، ونتیجه های حاصله، تفسیر و یا دوباره به دامنه مسئله ترجمه می شوند.

حداقل دو تلاش موفق برای به بصورت فرمول دراوردن احتمال وجود دار : فرمولاسیون کولموگروف و فرمولاسیون کاکس. در فرمولاسیون کولموگروف (نگاه کنیدبه )، مجموعه ها به عنوان واقعه و احتمالات را به عنوان میزانی روی یک سری از مجموعه ها تفسیرمی کنند. در نظریه کاکس، احتمال به عنوان یک اصل (که هست، بدون تجزیه و تحلیل بیشتر) و تاکید بر روی ساخت یک انتساب سازگار از مقادیر احتمال برای گزاره ها است. در هر دو مورد، قوانین احتمال یکی هستند مگر برای جزئیات تکنیکی مربوط به آنها.

روشهای دیگری نیز برای کمی کردن میزان عدم قطعیت، مانند نظریه Dempster-Shafer theory یا possibility theory وجود دارد ، اما آن ها به طور اساسی با آنچه گفته شد، تفاوت دارند و با درک معمول از قوانین احتمال سازگار نیستند.






تاریخچه

مطالعه علمی احتمال، توسعه ای مدرن است. قمارنشان می دهد که علاقه به ایده های تعیین کمیت برای احتمالات به هزاران سال می رسد، اما توصیفات دقیق ریاضی خیلی دیرتر به وجود آمد. دلایلی البته وجود دارد که توسعه ریاضیات احتمالات را کند می کند. در حالی که بازی های شانس انگیزه ای برای مطالعه ریاضی احتمال بودند، اما مسائل اساسی هنوز هم تحت تاثیر خرافات قماربازان پوشیده می شود.

به گفته ریچارد جفری، "قبل از اواسط قرن هفدهم، اصطلاح ‘’ احتمالی’’ به معنای قابل تایید (تصویب) و در آن معنا چه برای عقیده افراد و چه برای عمل مورد استفاده بود. در واقع افکار یا اقدام احتمالی، رفتاری بود که مردم معقول درآن شرایط از خود نشان می دادند." البته به خصوص در زمینه های قانونی ،احتمالی (به انگلیسی: Probability) همچنین می تواند به گزاره ای که شواهد خوبی برای اثبات آن وجود دارد، اطلاق شود.

گذشته از کار ابتدایی توسط Girolamo Cardano در قرن 16 اصول احتمالات به مکاتبات پیر دو فرما و بلز پاسکال (1654). کریستین هویگنس (1657) اولین مدل شناخته شده علمی از این موضوع را داد. یاکوب برنولی ARS Conjectandi (منتشرشده پس ازمرگ،1713) و اصول شانس Abraham de Moivre (1718) این موضوع را به عنوان شاخه ای از ریاضیات مطرح می کند. برای تاریخچه ای از توسعه های اولیه مفهوم احتمال ریاضی، ظهور احتمال هک ایان و علم حدس جیمز فرانکلین را ببینید.

تئوری خطاها ممکن است از Roger Cotes's Opera Miscellanea (منتشرشده پس ازمرگ،1722) سرچشمه گرفته باشد، اما شرح حالی که توماس سیمپسون در سال 1755 آماده کرد(چاپ 1756)، برای اولین بار اعمال این نظریه به بحث در مورد خطاهای مشاهده است. چاپ مجدد (1757) این شرح حال نشان می دهد که خطاهای مثبت و منفی هر دو به یک اندازه قابل پیشبینی هستند، و با اختصاص برخی از محدودیت های معین، بازه ای برای تمام خطاها ارائه می دهد.سیمپسون همچنین در مورد خطاهای پیوسته بحث می کند و یک منحنی احتمال را توصیف می کند.

پیر سیمون لاپلاس(1774) برای اولین بار سعی دراستنتاج قانونی برای توصیف مشاهدات از نظر اصول تئوری احتمالات کرد. او قانون احتمال خطاها را با یک منحنی به صورت y = \phi(x), x ، x هر نوع خطا و y احتمال آن معرفی می کند و 3 خاصیت برای این منحنی وضع می کند:

نسبت به محور y متقارن است
محور x مجانب است، احتمال خطا در \infty صفر است
مساحت زیر نمودار آن برابر 1 است.

او همچنین، در سال 1781، یک فرمول برای قانون امکان خطا ( اصطلاحی که لاگرانژ سال 1774 مورد استفاده قرار داد) ارائه کرد، اما به معادلات منظمی منجر نشد.

به طور کلی پیدایش فنون و مفاهیم مربوط به احتمالات را باید به آغاز مدل‌سازی ریاضی و استخراج و اکتشاف دانش در زمینه‌های پیچیده تر علوم نسبت داد.






تفسیرها و تحلیل‌های مفاهیم احتمالات

کلمه احتمال تعریف مفرد مستقیم برای کاربرد عملی ندارد. در واقع، چندین دسته گسترده از تفسیر احتمال، که پیروان دارای دیدگاه های مختلف (و گاهی متضاد) در مورد ماهیت اساسی احتمال وجود دارد.

Frequentists
Subjectivists
Bayesians







کاربردها

نظریه احتمال در زندگی روزمره در ارزیابی ریسک و در تجارت در بازار کالاها اعمال می شود. دولت ها به طور معمول روش های احتمالاتی را در تنظیم محیط زیست اعمال می کنند، که آن را تجزیه و تحلیل مسیر می نامند. یک مثال خوب اثر احتمال هر گونه درگیری گسترده در خاورمیانه بر قیمت نفت است، که اثرات موج واری روی اقتصاد کل جهان می گذارد. ارزیابی که توسط یک معامله گر کالا زمانیکه احتمال جنگ بیشترباشد، در مقابل حالتی که احتمال کمتری دارد، قیمت ها را بالا و پایین می فرستد و معامله گران دیگر را نیز از نظرات خود آگاه می کند. در واقع، احتمالات (در تجارت) به طور مستقل ارزیابی نمی شوند و لزوما عقلانی نیستند. تئوری های رفتار مالی برای توصیف اثر فکر گروهی در قیمت گذاری ، در سیاست، و در صلح و درگیری ظهور کردند.

می توان گفت که کشف روش های جدی برای سنجش و ترکیب ارزیابی های احتمال، عمیقا جامعه مدرن را تحت تاثیر قرار داده است. مثلا اکثر شهروندان اهمیت بیشتری به اینکه چگونه ارزیابی های احتمال وشانس ساخته می شوند، می دهند واینکه تاثیر آنها در تصمیم گیری ها بزرگتر و به ویژه در دموکراسی چگونه است.

یکی دیگر از کاربردهای قابل توجه نظریه احتمال در زندگی روزمره، قابلیت اطمینان می باشد. بسیاری از محصولات مصرفی، از جمله خودروها و لوازم الکترونیکی مصرفی، در طراحی خود به منظور کاهش احتمال خرابی(شکست) از نظریه قابلیت اطمینان استفاده می کنند. تولید کننده با توجه به احتمال خرابی یک محصول، آنرا گارانتی می کند.






علوم اجتماعی

نقش پایه و اساس را برای بیشتر علوم اجتماعی داراست. آزمونهای آماری فواصل اطمینان شیوه‌های رگرسیون (پس رفت)





توزیع احتمال
در نظریه احتمال و آمار تابع توزیع احتمال بیانگر احتمال هر یک از مقادیر متغیر تصادفی (در مورد متغیر گسسته) و یا احتمال قرار گرفتن متغیر در یک بازه مشخص (در مورد متغیر تصادفی پیوسته) میباشد. توزیع تجمعی احتمال یک متغیر تصادفی تابعی است از دامنهٔ آن متغیر بر بازهٔ 0,1. به طوری که احتمال رخدادن پیشامدهای با مقدار عددی کمتر از آن را نمایش می‌دهد.





روش‌های آمارگیری
در آمار کاربردی، روش‌های آمارگیری روش‌هایی برای نمونه‌برداری از یک جامعه آماری هستند که به منظور بهبود میزان پاسخ و دقت پاسخ به آمارگیری تدوین می‌شوند. سنجه‌های اندازه‌گیری شده آماره نام دارند که به منظور استنباط آماری در مورد کل جامعه طراحی می‌شوند. گه‌گاه آماره‌هایی توصیفی نیز گردآوری می‌شوند. نظرسنجی‌ها، پرسشنامه‌ها، و سرشماری‌ها در مورد وضعیت سلامت یا بازار مثال‌هایی از آمارگیری هستند. آمارگیری ابزار مهمی برای تحقیق در مورد جنبه‌های مختلف جامعه است و اطلاعات مهمی را در اختیار می‌گذارد؛ از جمله زمینه‌هایی که آمارگیری در آن کاربر دارد به بازاریابی، روانشناسی، سلامت عمومی، و جامعه‌شناسی اشاره کرد.





داده

به طور کلی، می‌توان همهٔ دانسته‌ها، آگاهی‌ها، داشته‌ها، آمارها، شناسه‌ها، پیشینه‌ها و پنداشته‌ها را داده یا دیتا (به انگلیسی: Data) نامید. انسان برای ثبت و درک مشترک هر واقعیت و پدیده از نشانه‌های ویژهٔ آن بهره گرفته‌است.

انسان برای نمایاندن داده‌ها نخست از نگاره و در ادامهٔ سیر تکاملی آن از حروف، شماره‌ها و نشانه‌ها کمک گرفت. برای بازنمودن داده‌ها از این موارد کمکی یا ترکیبی از آن‌ها استفاده می‌شود
در رایانه

به اعداد، حروف و علائم که جهت درک و فهم مشترک از انسان‌ها یا رایانه سرچشمه می‌گیرند داده می‌گویند. داده‌ها معمولاً از سوی انسان‌ها بصورت حروف، اعداد، علائم و در رایانه به صورت نمادهایی (همان رمزهای صفر و یک) قراردادی ارائه می‌شوند. اصطلاح داده یک عبارت نسبی است یعنی اگر موجب درک و فهم لازم و کامل دراین مرحله شده‌است به عنوان آگاهی یا اطلاعات از آن نام می‌برند و چنانچه موجب درک و فهم کامل نگردد به عنوان همان داده به شمار می‌آیند و چون هدف نهایی آگاهی و اطلاعات است باید از سوی دست‌اندرکاران (انسان یا رایانه) دستکاری یا پردازش شوند. منظور از دستکاری یا پردازش داده‌ها انجام عملیاتی از قبیل جمع، تفریق، ضرب، تقسیم، مقایسه وغیره‌است.

داده‌ها مجموعه‌ای از نمادها (برای انسان حروف، اعداد، علائم و برای رایانه رمزهای صفر و یک) هستند که حقایق را نشان می‌دهند و برای انسان از طریق رسانه‌های وی (بینایی، شنوایی، چشایی، بویایی، بساوایی) و برای رایانه از طریق لوازم ویژه (صفحه کلید موس و غیره) به دست می‌آیند.

داده‌ها امروزه فقط از سوی انسان یا رایانه پردازش می‌شوند یعنی کارهایی روی آن‌ها صورت می‌گیرد. در پردازش داده‌ها (داده‌پردازی) در رایانه ابتدا داده‌ها به رایانه وارد می‌شوند. این داده‌ها درابتدا ذخیره شده و روی آن‌ها عملیاتی (جمع، تفریق، ضرب، تقسیم و...) صورت می‌گیرد. پس از این که این عملیات (پردازش) صورت گرفت معمولاً داده‌ها به یک رایانه دیگر یا دوباره به انسان‌ها منتقل می‌شود. در اغلب گزارش‌ها و یادداشت‌های سازمانی، داده‌ها به چشم می‌خورند. برای نمونه، تاریخ و مقدار یک صورت‌حساب یا چک، جزئیات فهرست حقوق، تعداد وسایل نقلیه‌ای که از نقطهٔ خاصی در کنار جاده گذشته‌اند،... نمونه‌هایی از داده‌ها هستند.
انواع داده‌ها از نظر ساخت‌یافتگی

داده‌های ساخت‌یافته
داده‌های نیمه‌ساخت‌یافته







داده‌های زمانی
در بسیاری از کاربردهای مبتنی بر داده‌ها و اطلاعات ذخیره‌سازی و بازیافت حالا ت و وضعیت‌های سیستم در طی زمان اهمیت می‌یابد.





قضاوت

قضاوت در بافت حقوقی ، به معنی کشف حقیقت در نزاع چند طرف که در نهایت به ارائه حکمی از سوی نهاد متصدی قضاوت و لازم الاجراء از سوی حکومت برای پایان دادن به اختلاف میان آنها منجر می شود .





بیانیه
بیانیه متنی است که یک شخص یا گروه از آن برای بیان اصول، عقاید و اهداف خود به عموم استفاده می‌کند. رسمیت بیانیه‌ها، با توجه به بیان‌کنندهٔ آن‌ها و مطالب بیان‌شده، به دو دستهٔ رسمی و غیررسمی طبقه‌بندی می‌گردد.





استدلال

استدلال، ترکیب قانون‌مند قضیه(های) معلوم برای رسیدن به قضیه(های) تازه است. در استدلال، ذهن بین چند قضیه، ارتباط برقرار می‌کند تا از پیوند آن‌ها، نتیجه زاده شود و به‌این‌ترتیب نسبتی مشکوک و مبهم به نسبتی یقینی تبدیل شود.






انواع استدلال

تمثیل

تمثیل سرایت دادن حکم یک موضوع به موضوع دیگر به دلیل مشابهت آن دو به یکدیگر است.







استقرا

استقرا نوعی استدلال است که در آن ذهن از جزء به کل سیر می‌کند. یعنی چند مورد جزئی را مشاهده می‌کند و سپس یک حکم کلی می‌دهد. مثلا در چند مورد آب را حرارت می‌دهیم و می‌بینیم که در صد درجه سلسیوس می‌جوشد و از این نتیجه می‌گیریم که هر آبی در صد درجه سلسیوس می‌جوشد.







قیاس (استنتاج)

اما وقتی ذهن از قضیه‌های کلّی به نتیجه‌های جزئی می‌رسد و به عبارت مختصرتر از کلّ به جز می‌آید، آن را قیاس می‌نامند. مثال:

«۱. سقراط انسان است.

۲. هر انسان فانی است.

۳. پس سقراط فانی است.»

در استدلال قیاسی از حداقل دو قضیهٔ درست، ضرورتا و بدون هیچ تردیدی قضیهٔ درست دیگری به نام نتیجه به دست می‌آید.





حقیقت
حقیقت مفهوم و اصطلاحی است برای اشاره به اصل هر چیز استفاده می‌شود.






واژه‌شناسی

واژه حقیقت وام‌واژه‌ای است که از واژه عربی حقیقة وارد فارسی شده‌است. معادل انگلیسی واژه حقیقت واژهٔ Truth می‌باشد.






تفاوت حقیقت و واقعیت

حقیقت شامل ذات هر چیزی بوده و غیر قابل تغییر است و به همین دلیل بر خلاف واقعیت امری است که لزوماً با برهان‌های علمی قابل اثبات نیست. در بسیاری موارد حقیقت ( به دلیل اینکه از دسترس انسان به حیطه ذات به دور است )به نوع نگرش افراد بستگی پیدا میکند. بطور مثال واقعیت و حقیقت واقعه کربلا را می‌توان به این دو صورت بیان کرد.

واقعیت: حسین و یارانش به سمت کوفه حرکت کردند، لشکریان یزید در محلی به نام کربلا بر آنها حمله کردند، و حسین کشته شد. و یزید پیروز این جنگ بود.

اما حقیقت می‌تواند این باشد:

در واقعه کربلا امام حسین و یاران با وفایش برای نجات دین اسلام تصمیم به هجرت به کوفه گرفتند. اما لشکریان یزید ملعون به آنان حمله کردند و در این واقعه امام حسین به شهادت رسید. و امام حسین توانست با نثار خون خود اسلام را زنده نگاه دارد و به حق او پیروز این میدان بود.


اگر در ریشهٔ واژگان حقیقت و واقعیت دقیق شویم، تفاوت‌هایی را مشاهده می‌کنیم. ریشهٔ کلمهٔ حقیقت، "حق" به معنای راستی و درستی است و ریشهٔ کلمهٔ واقعیت، "وَقَعَ" به معنای رویدادن و یا اتفاق افتادن است. حقیقت، اشاره به ماهیت راست و درست دارد و واقعیت اشاره به امور عینی و یا اموری که اتفاق می‌افتند.

یک نگرش افراطی حقیقت یک واقعه تاریخی را جز بیان عواطف و احساسات گوینده در رابطه با آن واقعه نمی‌داند و هدف آن جذب باور به حقیقت گفته شده است.






حقیقت و واقعیت در اندیشه‌های متفکران و فلاسفه

در یونان باستان، نوعی تفکر اسطوره‌ای نسبت به مقولهٔ حقیقت و واقعیت وجود داشته که طی سیر تحول به مذهب و باورهای مذهبی تبدیل شده است. این مساله در هر تمدن دیگری نیز مشاهده می‌شود. تمدن‌های بین‌النهرین، هند و چین همگی چنین سیر تحولی را طی کرده‌اند.

تفکر اسطوره‌ای، طی تکاملش به صورت مثالی افلاطونی رسید که گونه‌ای تفکر مذهبی است. در اندیشه‌های مذهبی مانند سه مذهب زرتشتیت، مسیحیت و اسلام تمایز و جدایی واقعیت مادی و حقیقت وجود دارد.

دیدگاه عرفاً پیرامون حقیقت و واقعیت، شکل متکامل تفکرات دینی است.

آراء و اندیشه‌های متفکرین دوران مدرن و همچنین تحولاتی که در نوع نگاه انسان‌ها در جامعهٔ مدرن نسبت به حقیقت حاصل شده، باعث شده است تا مسیر گسست از اندیشه‌های اسطوره‌ای به اندیشه‌های دینی در دوران مدرن دچار واگشت و یا تغییر مسیر شود. یعنی تمایز و گسست حقیقت و واقعیت دوباره به اتحاد آن دو منجر شده است. در اصل، ظهور رئالیسم جدید و همچنین اومانیسم مدرن، نمایانگر گونه‌ای بازگشت به اصول کلاسیک یونانیان است. بشر در دوران مدرن اعتقاد یافت که طی سالیان درازی، دچار خطا شده است، از این رو دوباره به تفکر یونانی رجعت کرد.

در اندیشه‌های ماتریالیست‌ها و مارکسیست‌ها از جمله فوئرباخ، مارکس و انگلس و پیروان آن‌ها، ماده‌گرایی که خود یکی از ثمرات مدرنیته است، نمایشگر رجعت انسان به یکی انگاشتن حقیقت و واقعیت است. با این تفاوت که از نگاه ماتریالیست‌ها، حقایق، قوانینی هستند که بر واقعیات حاکم‌اند. به طور مثال، نیروی محرکهٔ تاریخ که بر وقایع تاریخی احاطه دارد، حقیقتی دربارهٔ جهان و هستی است.

اندیشه‌های فردریش ویلهلم نیچه، فیلسوف نامدار آلمانی دربارهٔ حقیقت از اهمیت بسیار بالایی برخوردار است. چون او، نوع نگاه انسان به حقیقت را دگرگون کرد و با وهمی خواندن حقیقت، به تبیین یک نگاه کاملاً نسبی‌گرایانه پرداخت. نسبیت حقیقت که با نیچه آغاز شد در نهایت به مکاتب و تفکراتی از جمله هرمنوتیک، مکتب فرانکفورت و پست‌مدرنیسم منجر شد.

اندیشه‌های نسبی‌گرایانهٔ نیچه در باب حقیقت و واقعیت به شکلی رادیکال در آراء متفکران پست مدرنی چون ژان فرانسوا لیوتار، ژاک دریدا، ژیل دلوز، میشل فوکو و ژان بودریار دوباره مطرح شد.
11:37 am
ماهی
ماهی یک مهره‌دار خونسرد و آبشش‌دار است که در آب زندگی می‌کند. ماهیها (با بیش از ۲۷۳۱۵ گونه) یک گروه پراتبار (پارافیلتیک) هستند و به سه گروه ماهیهای استخوانی (استیکتیس Osteichthyes)، با (۲۲۰۰۰ گونه)، ماهیهای غضروفی (کندریکتیس Chondrichthyes با بیش از ۸۰۰ گونه) و گروههای مختلف ماهیهای بدون آرواره (۷۵ گونه) از جمله ماهی‌های مکنده و دهان‌گِرد (hagfish) تقسیم می‌شوند. ماهیها در اندازه‌های مختلف به چشم می‌خورند و طول آنها از ۴۵ فوت مثل کوسه نهنگی تا ۸ میلی متر مثل گوبی کوتوله (dwarf goby) متغیر می‌باشد. جانوران آبزی دیگر همانند عروس دریایی و ماهی مرکب ماهیهای حقیقی نیستند.





برای نمونه برخی از ماهیان چون صخره‌های ناهنجار و برخی مانند کرمهای لولنده هستند. بعضی تخت و مسطح چون کلوچه آردی و پاره‌ای مانند توپ هستند. ماهیان همه گونه رنگی دارند. یعنی همه رنگ‌های رنگین کمان. بسیاری از ماهیان رنگهای روشن همچون رنگهای درخشان و روشن پرندگان. سرخ تند زرد آبی و ارغوانی و صدها نمونه و گونه رنگ زیبا و دلربا و طرح‌های راه راه و خطوط شبیه توری یا نقطه چین دارند.

کوچک‌ترین ماهی پیگمی گابی فیلیپینی است که کمتر از ۱۳ میلیمتر در کمال رشد طول دارد. بزرگ‌ترین ماهی شارک وال می‌باشد که در رشد کامل ۱۸ متر طول و ۱۴ تن وزن دارد. این ماهی جانوران کوچک دریایی و گیاهان را می‌خورد و به طور کلی بی آزارتر از ماهیان دیگر نسبت به انسان است. خطرناکترین ماهی تنها چند کیلوگرم وزن دارد. سنگ ماهی که برآمدگی زهرداری دارد که می‌تواند با زهرش آدمی را در چند دقیقه بکشد. ماهی‌ها تقریباًٌ در همه آبها زندگی می‌کنند: در آبهای در نقطه یخ زدن قطب شمال و در رودها و جویبارهای بخارآلود جنگلهای استوایی و در جویبارهای خروشان کوهستانها و در آبهای رودهای آرام زیرزمینی. برخی از ماهیان سفرها و مهاجرتهایی سرتاسری اقیانوسی می‌کنند. ماهیان دیگر بیشتر زندگی خود را درون شنها و کف اقیانوسها می‌گذرانند. بیشتر ماهیان هرگز اب را ترک نمی‌گویند. اما برخی از ماهیان ممکن است ماهها در بستر خشک رودخانه زنده بمانند.

یک نوع ماهی به نام آناباس در سواحل فیلیپین، مالزی و مشرق هند وجود دارد که پس از این که بر اثر طغیان آب از آب دریا بدور و در برکه‌ای خشک شد از میان گل و لای خزان خزان همچون خزندگان راه می‌روند تا خود را به دریا برساند. ماهیان برای آدمی اهیمت بسیار دارند، خوراک میلیون‌ها نفر از مردم از ماهی فراهم می‌شود عده‌ای برای تفریح به شکار ماهی می‌روند و بسیاری آنها را همچون جانوران دست آموز در آکواریوم و غیره نگه می‌دارند. ماهیان در تعادل طبیعت نقش مهمی دارند. ماهیان گیاهان و جانوران آبزی را می‌خورند و باز خوراک گیاهان و جانوران می‌گردند و ماهیان تعادل مجموع کلی گیاهان و جانوران کرده زمین برقرار می‌سازند.

همه ماهیان مهره دار و دارای آلت تنفسی مخصوصی برای دم و بازدم در آب و خونسرد هستند. ماهیان نمی‌توانند حرارت بدن خود را با حرارت محیط اطراف خود میزان کنند. بعلاوه تقریباًٌ همه ماهیان باله‌ها و پره‌هایی دارند که در شنا کردن به کار می‌روند. جانوران آبی دیگر مانند دلفین‌ها و وال‌ها شبیه ماهی به نظر می‌رسند گرچه مهره دار و باله دار می‌باشند ولی بر خلاف ماهیان بچه زا هستند و بچه‌های خود را شیر می‌دهند به علاوه بر خلاف ماهیان با شش دم و بازدم می‌کنند همچنین خونگرمند.




خصوصیات ماهی‌ها

ماهی‌های زیادی در آبهای شور و شیرین زندگی می‌کنند که از لحاظ شکل، رنگ، اندازه، نوع غذا، نوع رفتار، محل زندگی با هم تفاوت دارند.

از لحاظ نوع غذا ماهی‌ها را می‌توان به ۳ گروه اجمالی زیر تقسیم کرد:

الف)گوشت خوار مانند:اسکار، کوسه‌ماهی، پیرانا و غیره ب)همه چیز خوار مانند: گربه ماهی ج)گیاه خوار مانند: مولی

از لحاظ رفتار می‌توان رفتارهای زیر را برای ماهی‌ها عنوان نمود:

الف)ماهی‌های صلح جو با رفتار مسالمت آمیز مانند گلدفیش، گوپی، مولی وغیره ب)ماهی‌های با رفتار خشن مانند پیراناها، کوسه ماهی، اسکار و غیره ج)ماهی‌های انزوا طلب مانند مارماهی، سفره ماهی وغیره د)ماهی‌هایی با زندگی گروهی مانند پیراناها، بارب و غیره

از لحاظ زندگی ماهی‌ها را به دسته‌های زیر تقسیم می‌کنند:

الف)آب شور مانند کوسه ماهی، نهنگ، دلفین و غیره ب)آب شیرین مانند بارب، قزل آلا و غیره ج)سطح آب د)لایه‌های میانی آب ر)اعماق آب و کف دریا

اسکلت بعضی از ماهی‌ها غضروفی است مانند کوسه ماهی، اره ماهی، ماهی خاویار، سفره ماهی و غیره. داشتن باله و آبشش، ماهی را برای زیستن در آب سازگار می‌کند. بیشتر ماهی‌ها دارای فلس هستند. به نوع خاصی از فلس پولک گفته می‌شود.

ماهی‌ها از طریق آبشش تنفس می‌کنند. آبشش ۲ نوع است، ۱- داخلی ۲- خارجی، آبشش‌های داخلی آبشش‌هایی هستند که پوششی دارند ولی آبشش‌های خارجی پوششی ندارند.ماهی‌ها وقتی رشد می‌کنند، پولک‌هایی در می‌آورند که با دیگر پولک‌ها تفاوت دارد وبه راحتی تشخیص داده می‌شوند. دو خط جانبی روی پهلوهای ماهی است که از سلول‌های حساسی ساخته شده‌است، که به وسیلهٔ آن ماهی از تغییرات محیط خود با خبر می‌شود. بادکنکی در شکم ماهی وجود دارد که ماهی می‌تواند هوا وارد یا خارج از آن کند و بدین وسیله وزن خود را تغییر دهد و سبک و سنگین شود.




بوم‌شناسی ماهی

ماهیها را می‌توان تقریباً در همه نوع آب، چه شیرین چه شور، چه کم عمق درست زیر سطح آب و چه با عمق هزاران متر یافت. ولیکن دریاچه‌های بسیار شور همانند دریاچه گریت سالت Great salt lake واقع در ایالت یوتای آمریکا زیستگاه خوبی برای زندگی ماهیها نیست. بعضی از گونه‌های ماهی فقط جهت نگهداری و نمایش در اکواریوم پرورش داده می‌شوند. ماهی‌ها به‌عنوان یک منبع مهم مواد غذایی بشمار می‌آیند. دیگر جانوران آبزی نظیر نرم تنان و سخت پوستان که معمولاً ماهی صدف نامیده می‌شوند.) اغلب زمانی به‌عنوان ماهی در نظر گرفته می‌شوند که به‌عنوان غذا مورد استفاده قرار گیرند. گرفتن ماهی به‌عنوان غذا و یا به منظور ورزش، ماهی گیری نامیده می‌شود. برداشت سالانه از تمام حوزه‌های ماهیگیری جهان در حدود ۱۰۰ میلیون تن می‌باشد.

صید بی رویه ماهی نسل گونه‌های مختلف ماهی را به خطر انداخته‌است. گزارشی که در ۱۵ می‌سال ۲۰۰۳ در مجله Nature منتشر شده، حاکی از این بود که صید بی رویه سازمان یافته گونه‌های مختلف ماهی در اقیانوس‌های بزرگ به حدی زیاد بوده‌است که تنها کمتر از ۱۰ در صد از تعداد ماهیهایی که در سال ۱۹۵۰ وجود داشتند، باقی‌مانده‌اند. بویژه کوسه‌ها، ماهی‌های روغن (کاد مُرُو)ی اقیانوس اطلس و ماهی‌های ساردین اقیانوس آرام در خطر می‌باشند. نویسندگان بر کاهش، جدی، سریع و فوری صید ماهی و محافظت از زیستگاههای اقیانوسی در سرتاسر جهان توصیه اکید دارند.




چگونگی حرکت ماهی‌ها
ماهی به‌وسیله حرکت دادن قسمت عقبی بدن خود به سمت جلو حرکت می‌کند. ماهیچه‌های که دو طرف ستون فقرات (اسخوانهای پشتی) او را پوشانده‌اند حرکت دم او را کنترل می‌کنند ماهی ابتدا این ماهیچه را به یک طرف می‌کشاند و بعد به طرف دیگر و هم‌زمان دم خود را از یک طرف به طرف دیگر حرکت می‌دهد و به این ترتیب به جلو حرکت می‌کند ماهیها برای حرکت به سمتهای راست و چپ و همچنین بالا و پایین از باله‌های خود استفاده می‌کنند.



پرورش ماهی در اسطوره‌های ایرانی
در اسطوره‌های ایرانی جمشید را نخستین انسانی پنداشته‌اند که به پرورش ماهی پرداخت، جمشید پادشاه پیشدادی بود. ایرانیان محل پرورش ماهی را ماهی‌خانه می‌نامیدند.
ساعت : 11:37 am | نویسنده : admin | آکواریوم مصطفی | مطلب قبلی
آکواریوم مصطفی | next page | next page